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An important problem in unsupervised data clustering is how to determine the number of clusters. Here we
investigate how this can be achieved in an automated way by using interrelation matrices of multivariate time
series. Two nonparametric and purely data driven algorithms are expounded and compared. The first exploits
the eigenvalue spectra of surrogate data, while the second employs the eigenvector components of the inter-
relation matrix. Compared to the first algorithm, the second approach is computationally faster and not limited

to linear interrelation measures.

DOI: 10.1103/PhysRevE.78.066703

I. INTRODUCTION

The general problem of finding clusters in multivariate
data, i.e., decomposing the data set into subsets that share a
common characteristic, has a long history and yielded a va-
riety of different solutions, see, e.g., [1-3]. Despite these
efforts in time series analysis, a reliable, computationally
simple and parameter-free approach is still lacking and might
be helpful for a wide range of applications in diverse fields
such as physics, finance, social sciences, physiology, and
medicine. In all these fields multivariate time series are re-
corded. To better understand the underlying processes one
may identify groups within the M>1 signal channels that
are related with respect to some bivariate interrelation mea-
sure.

Recently, in [4] a clustering algorithm based on “affinity
propagation” has been proposed and in [5] coarse-graining of
Markov chains has been applied. Within the variety of ap-
proaches to data clustering, these methods are of particular
interest because they treat two fundamental problems of
clustering on the same footing:

(a) estimation of the number K of clusters and

(b) attribution of the objects or data channels to these
clusters.

This feature distinguishes the methods [4,5] from many
clustering approaches that either start from prior knowledge
or from assumptions about K or they require optimizing K in
terms of a posterior evaluation of the “goodness of fit.”

Here we extend our previous work [6,7] in order to deter-
mine K in the context of another recent approach to data
clustering. This approach consists of analyzing the compo-
nents of the eigenvectors corresponding to the largest eigen-
values (in the sequel abbreviated as “large eigenvectors”) of
equal-time correlation matrices [8—10] or of synchronization
matrices [11,12]. Using appropriate channel labeling, interre-
lation clusters are delineated in the matrix C of bivariate
interrelation coefficients C;; (i,j=1,...,M) between pairs of
data channels. These clusters appear as blocks with on aver-
age larger interrelation coefficients within the blocks than
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between them. In this case, it is straightforward to show that
for systems containing K clusters with m;>1 (k=1,...,K)
contributing channels (and sufficiently small intercluster re-
lations), for each cluster one eigenvalue of C is increased
with respect to the uncorrelated situation and m;—1 eigen-
values are decreased (“level repulsion”). Unclustered chan-
nels (note that different to parts of the literature we do not
address channels without partners as clusters of size m;=1
here) are not affected by the level repulsion and conse-
quently represent the center of the eigenvalue spectrum,
which is termed “bulk.” Consequently, it can be expected
that the number K of clusters and the total number of clus-
tered channels Eszlmk can be estimated by counting the num-
bers of “large” and of “small” eigenvalues in an appropriate
way. Note that the described repulsion scheme of eigenval-
ues is independent of channel labeling, while the block struc-
ture of the interrelation matrix becomes visible only for ap-
propriate channel numberings.

The presence of interrelation clusters is also reflected in
the structure of the eigenvectors. Using the signal channels
for representing the M-dimensional phase space (“channel
basis”), the eigenvectors corresponding to the repelled eigen-
values at both edges of the eigenvalue spectrum have domi-
nant entries exclusively for those components corresponding
to the correlated data channels. In other words, these eigen-
vectors are dominantly aligned to the subspace spanned by
the channels that contribute to one of the clusters (“cluster
subspace”). The bulk eigenvectors, on the other hand, have
nonzero components mainly in the orthogonal subspace.
While the identification of channels that contribute to any of
the clusters can be achieved on the basis of the largest eigen-
vector, their attribution to a particular interrelation cluster is
a more delicate problem. This is due to mixing of the largest
eigenvectors by any finite intercluster relations and by noise
such that the clusters can no longer be deduced directly from
their components.

To approach this problem, in [6,7], the concept of cluster
participation vectors (CPV) was introduced. They consist of
those orthogonal linear combinations of largest eigenvectors
that maximize a certain distance measure. Each CPV has
dominant components for those data channels only that con-
tribute to the same interrelation cluster. Consequently, differ-
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ent to the largest eigenvectors themselves, the CPV can be
used to group channels to clusters, even if considerable in-
tercluster relations are present. Like the majority of cluster-
ing algorithms, these recent developments concentrate on
problem (b), whereas for (a), only heuristic ideas based on
repulsion of the largest few eigenvalues from the bulk are
discussed briefly in [6,7]. Some of those ideas are limited a
priori to very special situations like linear cross-correlation
as interrelation measure or signals with white power spectra.

To overcome the limitations of our previous work, we
here introduce two nonparametric and data driven solutions
for problem (a). Both of them identify the numbers K- of
“large” and K° of “small” eigenvalues that are affected by
the level repulsion without requiring a (prejudiced) ad hoc
setting of thresholds. Consequently, apart from choosing a
significance level 0 <a <1 for statistical tests, the methods
are parameter-free. The first solution (Sec. III) employs ei-
genvalue spectra of ensembles of surrogate time series gen-
erated independently for each of the data channels. For linear
cross-correlation clusters and arbitrary power spectra, this
approach yields reliable results, but is computationally slow.
The second approach (Sec. IV) makes use of the eigenvector
components of the underlying interrelation matrix C, regard-
less of the eigenvalue spectrum. Focusing on appropriately
defined distances between normalized eigenvectors, the
method overcomes the restriction of the surrogate-based
method to linear interrelation measures. In addition, it is
computationally much faster.

The paper is organized as follows: In Sec. II, we present a
model used subsequently as a test framework to evaluate the
performance of the algorithms. This model offers large flex-
ibility to set up different linear correlation patterns between
data channels. Additionally, linear univariate properties of
the signals can be adjusted to experimental data. In this
sense, the employed data sets reflect important features of the
real world data one is interested in, while at the same time a
variety of correlation patterns can be simulated. Thereafter,
the algorithms are described separately in Secs. III and IV.
The performance of both approaches is compared in Sec. V
by testing under which conditions the number of interrelation
clusters is determined correctly. Finally, we apply the meth-
ods exemplarily to the electroencephalogram (EEG) of an
epileptic patient in Sec. VI.

II. ARTIFICIAL LINEAR COUPLING OF REAL WORLD
TIME SERIES

In Refs. [6,7] time series sampled from Gaussian white
noise were used as a model system for performance tests.
Cross-correlation clusters were constructed in a controlled
way by mixing joint and individual white noise components.
For this model some results are known analytically for the
uncorrelated case. The amount of random correlations (non-
zero values of the correlation coefficient that are solely due
to the finite length 7' of the time series but do not reflect
genuine interrelations) decreases approximately as ~1/VT.
Furthermore, the density p(\) of the eigenvalues of the
equal-time cross-correlation matrix can be written in a closed
expression in the limit of an infinite M and T such that the
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ratio Q=T/M=const>1 [13]. As shown in [9] numerical
data obtained for the same Q values are in excellent agree-
ment with the analytical result. Therefore one may use de-
viations from the analytical formula of the level density for
an eigenvalue-based estimation of the cluster number [7,8].
However, finite autocorrelation times are typical for many
kinds of real world data. They may drastically alter the
widths of the distribution of the elements C;; of the cross-
correlation matrix and consequently they change also the
shape of the level density and the width of the eigenvalue
spectrum [14]. This effect becomes more pronounced as the
power of slow Fourier frequencies increases. For this reason,
we extend the mixing model of [6,7] such that power spectra
of real world time series are adopted, while linear cross-
correlations remain adjustable.

We start from a set of multivariate real world time series
with arbitrary correlation structure X;(r) (i=1,...,M and ¢
=1,...,T) and normalize the channels to zero mean and unit
variance as defined over 7" data points by

Xi(1) = (X _

l

Xi(1) = Xi(1) = (1)

G2
1

Next, for every channel “i” of the normalized real world time

series )?i(t), an independent surrogate [15,16] is generated

X;— X" By definition they conserve univariate linear prop-
erties like the power spectrum and consequently the autocor-
relations of each data channel, whereas phase relations and
thus linear as well as nonlinear relationships between the
data channels are destroyed. We used an implementation of
the iterative amplitude adjusted Fourier transform (IAAFT)
algorithm [15,16] independently for each data channel. To
introduce an adjustable correlation pattern within 1<K
<M/2 subgroups of size 2<m<M (k=1,....K; 2
<Xm;<M), the average signals of all channels involved in
cluster “k” and cluster pair “kk’” are calculated at each time
step 1:

1 ~.
(1) =—2 X"(1). (2)
kick
1 —
Sar)(t) = ———— > X, (3)
Myt My o

The degree of correlation between subgroups of artificial
time series Y,(z) is controlled via mixing the normalized time

series &,(f) (representing the common intracluster compo-
nent) and Z(kk,)(t) (representing the common intercluster
component) to the channels’ individual components )??u"(t):
Y1) = E pikgk(t) + 2 Ui(kk')Z(kk/)(l) + Tii?urr(l)~ (4)
k (kk")

Here the channels’ independence

T=1-2 p— 2 T (5)
k (k")

must fall into the interval [0,1] for all channels “i” in order to
be able to vary between completely correlated and com-
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pletely uncorrelated situations. In-existence of clusters (K
=0) corresponds to 7;=1. If the independence 7,=7 of all
channels is equal, 1—7 is a measure for the total correlation
in the system. The strength of the linear “intracluster corre-
lations” is controlled by the coupling parameters p;,, which
have nonzero values only if channel “i” belongs to cluster
“k.” Similarly, the coupling parameters o) control the
strength of the linear “intercluster correlations” and are finite
only if channel “7” belongs to one of the clusters k or k'
Fk.

Note that besides noise and random correlations, the pres-
ence of intercluster correlations complicates searching for
the cluster number as well as attributing the channels to the
clusters. In addition, finite intercluster correlations even add
some arbitrariness to the genuine concept of clusters. For
sizable intercluster correlations, it is not obvious whether
separate clusters or a common cluster with substructure is the
“correct” interpretation. For these reasons, we set in the fol-
lowing the conditions o) <max(p;,py’) to ensure that
intracluster correlations are stronger than intercluster corre-
lations.

Due to mixing [Eq. (4)] the linear univariate properties of
the input channels X; and the output channels Y; cannot be
identical. Rather, the model supplies multivariate time series
Y; that offer a compromise between (a) easily adjustable lin-
ear correlation patterns and (b) power spectra and autocorre-
lations that are “realistic” enough to serve as a model for the
class of real world time series X; of interest. As our final
application will be cluster detection in time series of human
electroencephalograms (EEG), we illustrate this statement
with the example of a seizure and artifact-free EEG epoch
(2 days after electrode implantation and 2 days before the
first seizure) of T=1024 data points length, selected from a
continuous intracranial recording of an epileptic patient (see
Sec. VI for further details concerning the clinical data set).
The results shown in this and the subsequent sections do not
depend sensitively on the specific choice of the data seg-
ment. Figures 1(a) and 1(b) show the power spectrum (nor-
malized to total power) and autocorrelation functions for two
channels X, and X, of the original data. In Figs. 1(c) and 1(d)
the corresponding quantities are shown for two strongly
coupled channels Y, and Y,. Due to the mixing procedure (4)
these quantities are more similar to each other for the output
channels Y; than for the input data X;. For weaker coupling,
this effect diminishes. The important point here, however, is
that qualitatively characteristic features of the input data like
the decay of the power spectrum (approximately 1/f) and of
the autocorrelation function at small delays At are well cap-
tured by the correlated output data.

II1. SURROGATE-BASED ALGORITHM

In order to determine the number K of linear cross-
correlation clusters, it was suggested in [7] to compare the
eigenvalue spectrum \; (=1, ...,M) of the equal-time cross-
correlation matrix [17,18]

l~~
C= %YYf (6)

constructed from the measured data with the distribution of
eigenvalues \J (n=1,...,Ny,) of an ensemble of surrogates
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FIG. 1. (Color online) Comparison of relative power (normal-
ized to the total power, left) and autocorrelation functions (right) of
two original EEG channels (top) and two artificially correlated
(p=0.9, 0=0.0, 7=0.1) data channels (bottom). The fully drawn red
and dotted blue lines refer to data channels “1” and ‘27
respectively.

produced from the same data. In Eq. (6), Y is the M X T data

matrix with elements Y;,=Y,(¢), normalized as in Eq. (1). In
the sequel, it is assumed that the eigenvalues are ordered
according to their size: N, =\;. Based on the eigenvalue
repulsion scheme described in the Introduction, a cluster will
be defined for each eigenvalue A, at the upper end of the
spectrum that is significantly larger than the corresponding
surrogate eigenvalues N\j. Thus we begin with the largest
eigenvalue N\ ), and count for how many large eigenvalues the
null hypothesis H; that \; stems from the distribution of the
{N\{} can be rejected (without interruption). This number
gives an estimate K- of the number of clusters in the data.
For time series recorded from neurons in vitro, a similar
surrogate-based idea was used recently in [19].

A few technical details are in order here: As each cluster
consists of at least two channels, the maximal possible clus-
ter number is K,,,=M/2. To formalize the comparison of
the eigenvalue spectra in a nonparametric way, we rank order
for each of the K, largest eigenvalues (k=M —K,,
+1,...,M) the joint distribution Ay={\;,\}} of the original
and the surrogate eigenvalues. The probability that the origi-
nal eigenvalue \; has at least rank Ny, +1—v, (where 0
<y <Ng,) in A, if it is actually consistent with the surro-
gates’ distribution can be calculated. Given N, sets of sur-
rogates, it is p=(v+1)/(Ng+1). To detect significant de-
viations in the eigenvalue spectrum on an overall
significance level 0 < a <1, the individual significance levels
oy, of the multiple comparisons must be reduced. We use the
Holm-Bonferroni correction [20] and reject H, if p<ay
=a/[Ky—rank(p,)+1]. Similar to the more conservative
Bonferroni correction where oy = a/ K, the size N, of the
surrogate ensemble is fixed by «a and K,,,, in the following
way: Ng,=Kg/ @—1. The maximally needed number of
surrogates is thus given by Ng,,=M/(2a)—1. As this number
can be large, the workload can be reduced considerably for
practical applications by confining the search to a reasonably
chosen 1<K, .. <M/2 a priori. A flowchart of this algo-
rithm is given in Fig. 2.
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| choose significance level: 0<a<1? |

!

| diag. orig. correl. matrix C — {/\k} |

foreachi=1..M:
generate K _ /a-1 independent

surrogates of time series Y,

diag. surr. correl. matr. C" — {A}} |

¢

for large eigenval. k= M-K _+1..M
rank order joint distr. A,={A,, A}}

¢

calculate significances p, of H,

¢

count number K' of large eigenval.
with signif. p, < a/(K _-rank(p, )+1)

!

cluster number: KSWL =K' |

-

FIG. 2. Flowchart of the surrogate-based algorithm, see text for
details.

To illustrate this method, we show in Fig. 3(a) an example
of the eigenvalue spectra for four strongly correlated clus-
ters, each of them containing five data channels, and some
moderate intercluster correlations. The total number of data
channels is M =34 and the cross-correlation matrix (6) is
constructed over 7=1024 sample points. In the original ei-
genvalue spectrum, increased gaps A, —A; are found be-
tween the two largest eigenvalues N3, and 35 (better visible
on the linear scale) as well as between A5, and \3,. The first
gap suggests a single cluster, whereas the second one implies
four clusters. Indeed, the gap between the two largest eigen-
values is caused by the presence of intercluster correlations.
As discussed above, several clusters with sizable intercluster
correlations could also be interpreted as a single cluster with
a certain finer structure. Hence if the first noticeable gap was
used for defining the cluster number, this single cluster pic-
ture is implicitly applied. In Fig. 3(a), the largest four eigen-
values of the original data are clearly larger than the maximal
values of the Ng,,=339 surrogates (open symbols) corre-
sponding to K.,,=M/2 and a significance level of «=0.05.
Following the scheme described above, the cluster number
K=4 in the data can be correctly deduced regardless of the
finite intercluster correlations. Note the additional pro-
nounced gap between A\ 7 and A that clearly distinguishes a
group of K3, =16 small eigenvalues from the bulk. Thus, for
this example, also the total number of clustered channels can
be estimated correctly as Eszlmk=K£fu”+K§uH=20.

For data without any genuine correlations, the situation is
shown in Fig. 3(b). Here all eigenvalues are compatible with
those derived from the surrogates within the statistical error.
Note that in Fig. 3 the surrogate eigenvalue spectra are con-
siderably broader than expected for uncorrelated white noise
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FIG. 3. Illustrative examples for the eigenvalue spectrum of the
correlation matrix of model data (full symbols) and the distribution
of Ngr=339 surrogates, for which the average and extremal values
are shown (open symbols, the errors bars span from the maximal to
the minimal \}). Top: K=4 clusters of m=5 channels each (p
=0.44, 0=0.12, 7=0.2). Bottom: purely randomly correlated case
K=0. In both panels the gray shaded region indicates the range of
nonzero eigenvalue density for multivariate time series produced
from uncorrelated white noise and the same parameters M and 7,
see text.

time series (gray shaded region 0.669 <\,;<1.397, compare
to [13]). This pronounced deviation is solely due to the dif-
ferent power spectra of our EEG based time series (4) and
demonstrates why a simple comparison with white noise
model data is not sufficient.

From these observations it becomes evident that in prin-
ciple the cluster number K can be deduced by comparing the
original and surrogate eigenvalues. A similar result has been
obtained recently from a parametric testing procedure in
[19]. However, there are two important deficiencies of this
approach. First, the generation of IAAFT surrogate en-
sembles of size Ny~ K./ @ is computationally expensive.
In [15] it was shown that in order to reach accuracy & for the
power spectra, roughly 1/¢ iterations are necessary. The
computational complexity of the surrogate-based algorithm
is accordingly given by the generation of K|,/ « univariate
surrogates of IAAFT type for each of the M channels with
accuracy & using the fast Fourier transform (complexity
Tlog, T [21]) and amounts to (Kp./@)M(1/8)(Tlog, T).
Only if one needs to calculate surrogate eigenvalues anyway,
e.g., in order to estimate the genuine cross-correlation
strength [14] in the multivariate data set, the additional
workload of the surrogate-based algorithm for estimating K
is negligibly small.

Second, the surrogate-based method can be used for linear
interrelation measures such as cross correlation only. Within
the error tolerated during generation of the surrogates, linear
univariate properties like the autocorrelation function are the
same as for the original data. Genuine cross correlations,
however, are destroyed and the surrogates may serve to test
the null hypothesis of their complete absence, even though
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the correlation coefficient C;; is influenced by the autocorre-
lation. On the other hand, nonlinear univariate properties of
the signals are destroyed by the IAAFT surrogates together
with linear and nonlinear interrelations. Otherwise, this tech-
nique could not be used for nonlinearity testing [16]. This
implies that in cases where nonlinear univariate properties
might have some impact on nonlinear bivariate dependen-
cies, IAAFT surrogates are no longer suitable to probe the
null hypothesis of zero nonlinear interrelations. An alterna-
tive might consist of the computationally even more expen-
sive constrained randomization of time series [22] tailored to
conserve exactly those univariate nonlinear properties of in-
terest.

IV. EIGENVECTOR-BASED ALGORITHM

Different to the previous section, in the following we do
not need to restrict ourselves to any specific interrelation
measure between two of the M data channels. We use linear
cross correlation only for illustration. All we need in general
is that the matrix C constructed from bivariate interrelation
coefficients fulfills three requirements. (i) The measure must
be normalizable, —1 < C;< 1. (ii) Each channel must be per-
fectly interrelated with itself, C;;=1. (iii) The measure must
be symmetric, C;;=Cj;, in order to obtain real eigenvalues \;
and eigenvectors v,.

A first step towards identifying the number of interrelation
clusters of a multivariate data set from the eigenvectors of C
consists of separating the subspace of interrelated data chan-
nels (“cluster subspace”) from the subspace of independent
signals (“bulk subspace”). A criterion for such a discrimina-
tion can be derived directly from the structure of the eigen-
vectors of C. As described in the Introduction, the eigenvec-
tors of the repelled eigenvalues (i.e., those at both edges of
the spectrum) have dominant components in the channels
corresponding to correlated signals, while the remaining
eigenvectors are essentially orientated into the orthogonal
bulk subspace. In order to achieve the desired separation, we
compute the following distance measure for all pairs of nor-
malized eigenvectors:

ij»

M
Dy =2 |ay - a | (7)
i=1

This quantity was introduced in [6,7] to construct the CPV.
Here, the a;; of Eq. (7) are the components of the eigenvec-
tors v; and v, in the channel basis. It is easily checked that
Eq. (7) satisfies all requirements of a metric (symmetry, posi-
tive semidefiniteness, and the triangle inequality). Dy is
equal to zero for vectors where all components are identical
to each other up to a sign and assumes its maximum value
D=2 when the normalized vectors v, and v, have no com-
mon components. Note the similarity to the “taxicab metric”
or “Manhattan distance” Dyyyi=3" |a;—a;| [23].

The measure (7) is designed such that vectors belonging
to orthogonal subspaces generically have larger distances
than vectors that are taken from the same subspace. Hence
distances between eigenvectors corresponding to eigenvalues
that show a genuine repulsion either at the lower or upper
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edge of the spectrum on the one hand, or eigenvectors cor-
responding to bulk eigenvalues on the other (“within sub-
space distances”), show on the average smaller distances
than those between these groups (“intersubspace distances”).
Furthermore, in cases where the bulk subspace is not empty,
it is possible to distinguish within the correlated subspace
between “small” and “large” eigenvectors, provided the ei-
genvalues (and corresponding eigenvectors) are labeled in
rank order.

Thus if nonrandom correlations are present, the matrix D
shows a characteristic pattern where regions of predomi-
nantly smaller and larger distances alternate. The former ap-
pear between eigenvectors corresponding to the small (re-
gion S), the large (region L), or the bulk (region B)
eigenvalues as well as between combinations of one small
and one large eigenvalue (region SL). These regions are in-
terrupted by regions of larger distances between bulk eigen-
vectors and eigenvectors corresponding to either the large
(region BL) or the small eigenvalues (region SB). An ex-
ample of this characteristic pattern is illustrated in Fig. 4(a)
for the same data as in Fig. 3(a). The matrix elements Dy
displayed above the diagonal show a clear block structure
that can be exploited to distinguish the subspaces. Below the
diagonal, the separation into regions of smaller within sub-
space distances (white) and larger intersubspace distances
(black) is symbolized accordingly. The number K%, of eigen-
vectors belonging to region L can be used to define the num-
ber of correlation clusters. A separation of regions L and S is
possible whenever region B is nonempty, i.e., for the eigen-
vector based algorithm at least one data channel must be
unclustered. In the present example, the cluster number can
be defined correctly as K =K=4 and the total number of
clustered data channels is given by Ef:lmk=KeLv+K§v=20
where ngz 16 is the number of eigenvectors belonging to
region S.

The optimal partitioning of the matrix D can be achieved
automatically by studying the distributions of the within and
intersubspace distances D [white and black regions below
the diagonal in Fig. 4(a)] under independent variation of KELV
and KSV. As an objective criterion for the goodness of the
partitioning, we utilize nonparametric Kolmogorov-Smirnov
(KS) tests [21,24] to compare the unbinned partial distribu-
tions of the within and the intersubspace distances to their
joint distribution (distribution of all Dy, independent of any
supposed partitioning). The KS test quantifies the dissimilar-
ity between two distributions and gives a significance pgs,
which measures the probability that the dissimilarity is inci-
dentally equal or larger than the obtained value, although the
distributions are actually consistent [21,24]. Varying K-, and
K:V, we pick the partitioning that has the least chance pgg to
come about by incidence. In Fig. 4(b) the partial distributions
of this optimal partitioning are displayed together with the
joint one. For the shown example it is obvious that the null
hypothesis, that both partial distributions are consistent with
the joint one, can be rejected on an extremely small signifi-
cance level a.

Some technical details of the procedure are in order here.
As in the surrogate based algorithm of the previous section,
the range where K- must be searched is limited by the num-
ber of channels M: KSLV= 1,...,M/2. To form a cluster, each
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FIG. 4. Left: Distance matrix for the same example as in Fig. 3(a) (K=4, m=5, p=0.44, 0=0.12, 7=0.2). Whereas above the diagonal
the original matrix elements are shown, the idealized block structure of within and intersubspace distances to be revealed by the algorithm
is symbolized as white and black regions below the diagonal. Right: Histograms of the distributions of the within (fully drawn) and
intersubspace distances (dotted). The significances of a KS test for consistency of the partial with the joint distribution of all off-diagonal
matrix elements (gray shaded) are pyi™=6.0X 107* and pii'=3.9 X 1074, respectively.

large eigenvector must have at least one small partner and
hence K3,=K~,. In addition, in order to be able to distin-
guish between regions L and S, at least one eigenvector must
fall into the bulk subspace B. Thus K3, is limited to the range
K3 =K, ...,M-1-K%. The ~M?/4 elements of the space
spanned by K&V and KSV can be scanned systematically for the
best partitioning.

In order to optimize the partitioning, we search the mini-
mum of the sum P=ppat™+pit where pyat™ gives the sig-
nificance of the dissimilarity between the distribution of the
within subspace distances [white region in Fig. 4(a)] and the
joint distribution of all off-diagonal matrix elements Dy
[gray shaded in Fig. 4(b)]. pRs”" is the same for intersubspace
distances [black region in Fig. 4(a)]. Note that different to
only quantifying the dissimilarity of two distributions, the
significances pgg in addition take into account the effect of

different sample sizes induced by varying K-, and K3,

| choose significance level: 0<a<1 |

| diagonalize interrel. matrix C — {v,} |

| use (7) to construct dist. matrix D |
minimize P = pKSwi{h/'n + pKSinler
in the space of K “and K_$

min (pKSwithiny pKS/'nler) < 4a/M?

cluster number: K_*

K =KS=0
no. of clustered channels: K " + K_$ ev ev

FIG. 5. Flowchart of the eigenvector-based algorithm, see text
for details.

[21,24]. Finally, the partitioning that minimizes P is accepted
only if at least one of the partial distributions is incompatible
with the joint one on a chosen significance level a. As the
systematic scan of the space spanned by ng and KSV may
lead to incidentally small pkg in every trial, again a Bonfer-
roni correction for the number of trials ~M?/4 must be car-
ried out. Thus the partitioning is accepted only if
min(pyanin pie) < 4o/ M?. If this requirement is not ful-
filled, we reject the partitioning as probably incidental and
set Kle‘v=K§V=0.

This eigenvector-based algorithm for estimating the clus-
ter number K-, and the total number of clustered channels
K m=K% +K3, is summarized in the flowchart in Fig. 5.
Different to the surrogate-based algorithm of Sec. III, appli-
cation of this recipe to nonlinear interrelation measures is
possible. A second advantage is that neither the chosen level
of significance « influences the eigenvector-based algo-
rithm’s additional workload given by M? (construction of the
distance matrix D) nor are iterations necessary. Therefore, as
compared to IAAFT surrogates, the time complexity 7 of the
eigenvector based algorithm is

ZLIIT Kmax l T 10g2 T
Tey a & M

(8)

times smaller, i.e., typically several orders of magnitude. In
this respect, online estimation of the cluster number in con-
tinuously recorded multivariate signals is easily feasible,
which is in practice a serious problem for the algorithm
based on IAAFT surrogates due to huge computation times.

V. PERFORMANCE TEST

In the following, the performance of the two algorithms is
assessed in terms of correct estimates of the cluster number
K. Using the model of Sec. II the performance is quantified
by the ratio R=Ng/N,,, of the number Ny of correct detec-
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FIG. 6. Dependence of the performance measure R on the cluster sizes m; and m, in a two cluster situation with parameters M =34,
T=512, p;=p,=0.7, =0, 7=0.3, and N,,=20. Left: Surrogate-based algorithm. Right: Eigenvector-based algorithm. The significance level

is chosen equally as a=0.05 in both cases.

tions KX=K and the size N., of the used ensemble of inde-
pendent realizations of the data matrix (4) produced under
identical conditions. Not surprisingly, we found that both al-
gorithms perform better for larger 7, i.e., the longer the ana-
lyzed time series are (data not shown). This can be easily
explained by the suppression of random correlations with
increasing 7. For our model data derived from interictal
EEG, we found that both algorithms yield good results for
T/M = 10; though this finding may not apply for data with
considerably different power spectra. In addition, we con-
firmed the intuitive expectation that reliability of both algo-
rithms decreases with increasing signal independence 7; (data
not shown), i.e., the smaller the correlation of the clusters,
the larger the error rate.

In the following, we investigate situations that are unfa-
vorable for at least one of the algorithms. In Fig. 6 the per-
formances are compared for a two cluster situation K=2 with
p1=p,=0.7 and 0=0 as a function of the individual cluster
sizes m; and m,. We set M=34 and T=512 in this and the
subsequent figures and choose a significance level a=0.05
requiring the generation of N,,=339 surrogates. Both algo-
rithms perform poorly if one of the two clusters is very
small, m,m,=<3. For small m,=m,, the eigenvector-based
algorithm slightly outperforms the surrogate-based one. In
this case, repulsion of the two largest eigenvalues due to
cluster formation is too weak to be detected reliably by the
surrogate-based algorithm. In the case of small bulk sizes
m+my=~M the situation is opposite as the eigenvector-
based algorithm has difficulties in partitioning the distance
matrix D. A more serious weakness of the eigenvector-based
algorithm is revealed in situations with large asymmetries
m=>m, of the cluster sizes. For p;=p, in these cases mainly
a single cluster is found K{;Vzl. Using the CPV algorithm
[6,7] only the channels contributing to the larger group are
detected, while the smaller cluster is missed. We found that
in these situations the performance of the eigenvector-based
algorithm improves considerably if the asymmetry m; >m,
is balanced by stronger coupling strengths p;<<p, in the
smaller cluster. The surrogate-based algorithm is almost un-
affected by asymmetric cluster sizes.

To detect performance differences not due to asymmetries
and to simultaneously keep the huge parameter space of pos-
sible cluster patterns manageable, we constrain the analysis
to the special case of equal cluster sizes m;=m in the sequel.
In addition, all intra- and inter-cluster coupling strengths of
Eq. (4) are set to the same constant: p;=p and o,uH=0

(for all data channels “i”” of a cluster and k,k'=1,...,K). For
these situations we investigated the dependence of the algo-
rithms’ performances on the ratio 7,=2 )Gy Zipix be-
tween the total inter- and intra-cluster coupling strengths af-
fecting channel “” (data not shown). It turned out that
different to allocating the channels to clusters [6,7] the per-
formance for estimating the cluster number K was rather
insensitive to the specific composition of inter- and intra-
cluster couplings. Therefore we also fix all r; as r;=r=(K
—1)a/p=0.5 in the sequel.

With these specifications we explore the dependence of
the performance measure R on cluster size m and number K.
Results are shown in Fig. 7. The empty region above the
solid line corresponds to K> M/m and is not accessible un-
der the simplifying assumption of equal cluster sizes my
=m. In the example shown, the independence of channels is
fixed at the relatively large value of 7=0.4. We find that both
algorithms have problems in detecting small clusters. Again
small clusters are missed more frequently by the surrogate-
based algorithm resulting in too small estimates K< K. For
smaller 7 we obtained better results for both algorithms,
while the outcome was qualitatively unchanged. The
eigenvector-based algorithm has certain difficulties for small
bulk sizes, as can be seen from the areas close to the line
K=M/m.

To study how strongly the estimated cluster number de-
pends on the chosen significance level @ we investigate the
unfavorable situation m=4 (small cluster sizes) and 7=0.4
(large channels’ independence). In Fig. 8 the estimated clus-
ter number K is shown as a function of K for four different
values of a. As indicated by the error bars, the dependence of
both algorithms on « is weak. However, as the eigenvector-
based algorithm has difficulties in rejecting spurious parti-
tionings if « is too large, @<0.10 is recommended. The
surrogate-based algorithm tends to underestimate K except in
the uncorrelated situation (K=0), which is revealed securely.
On the contrary, for the eigenvector-based algorithm the de-
viation of K- from K is less pronounced and has smaller
standard deviation. The only exceptions are cluster number
K=0 (for «>0.10) and small bulk sizes (my,;;=2 for K=8).

In summary, we found that the performance of the
eigenvector-based algorithm is impaired by strongly asym-
metric cluster sizes and small bulk sizes. To avoid difficulties
in detecting the absence of clusters, we recommend a signifi-
cance level of at least «=<0.10. The performance of the
surrogate-based algorithm is not impaired by these problems.
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FIG. 7. Dependence of the performance measure R on cluster size m and cluster number K. M=34, T=512, 7=0.4, r=0.5, and N,
=20. Left: Surrogate-based algorithm. Right: Eigenvector-based algorithm. The significance level is chosen equally as a@=0.05 in both cases.

As a fully drawn line the function K=M/m is shown.

However, for small cluster sizes it performs worse than the
eigenvector-based algorithm and under certain conditions the
underestimation of the cluster number is more pronounced.

VI. APPLICATION TO INTRACRANIALLY RECORDED
EEG

Epilepsy is the second most common neurological disease
and roughly one-third of the patients are not rendered
seizure-free by current therapies. It is plausible that a better
understanding of the spatiotemporal evolution of epileptic
seizures may ultimately promote development of new tools
for seizure control. Importantly, epileptic seizures are not
produced by single neurons, but are the result of the emer-
gent activity of large neuronal networks that coalesce into
clusters with pathologic collective dynamics [25]. Therefore
investigating cluster formation and disintegration in EEG re-

estimated cluster number K;,
[\ w = 9} (@)} ~ [ore] o
T
|

R A AR NS NN SR NN SO S NS |
0 1 2 3 4 5 6 7 8
true cluster number K

cordings seems to be a reasonable approach to assess seizure
dynamics. To demonstrate the usefulness of the methods de-
veloped in the present paper in this context, we show in the
following their application to EEG recordings. Other interre-
lation matrix-based clustering approaches to multivariate
neurophysiological data have been made in [6,12,19]. Differ-
ent clustering approaches to EEG data from epilepsy patients
were recently presented in [26,27].

Here, we discuss in detail the evolution of the cluster
pattern in an intracranially recorded EEG of an 18-year-old
male suffering from pharmacoresistant temporal lobe epi-
lepsy. The patient underwent evaluation for the possibility of
epilepsy surgery at the Inselspital in Bern, Switzerland. He
had signed informed consent that EEG and imaging data
might be used for research purposes, and the study protocol
had previously been approved by the ethics committee of the
University of Bern. Using four implanted strip and two fora-
men ovale electrodes (40 contacts in total, see the x-ray im-

L L S B B B B

- e a=001 e
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FIG. 8. (Color online) Dependence of the estimated cluster number K" on the true cluster number K for various significance levels a.
M=34,T=512, m=4, 7=0.4, r=0.5, and N, =20. Left: Surrogate-based algorithm. Right: Eigenvector-based algorithm. For better visibility
the symbols are shifted slightly along the x axis and the line K=K is shown for eye guidance.
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FIG. 9. (Color online) Evolution of the cluster structure during a typical focal onset epileptic seizure of a patient suffering from
pharmacoresistant temporal lobe epilepsy. Contacts allocated to the same cluster are marked by the same symbol and color. Top: Cluster
number estimated using the surrogate-based algorithm. Bottom: Cluster number estimated using the eigenvector-based algorithm. Shown are
snapshots of a pre-ictal [(a) and (b)], an early ictal [(c) and (d)], a late ictal [(e) and (f)], and a post-ictal [(g) and (h)] period. Abbreviations:
Fo: foramen ovale electrodes; FPR1-FPRS: right fronto-polar strip electrode; FBR1-FBRS: right fronto-basal strip electrode; TAR1-TARS:
right temporal anterior strip electrode; and OCR1-OCRS: occipital central strip electrode.

aging in Fig. 9) the EEG was recorded directly from the
cortical surface (sampled at 200 Hz, bandpass filtered be-
tween 0.1 and 70 Hz, analog-to-digital converted with 16-bit
resolution). After excluding artifact-contaminated channels
(Fo2, Fo3, Fo7, Fo8, FPR4, and FPRS8) by visual inspection,
M =34 EEG signals were analyzed. The average of all chan-
nels was used as the reference signal because it had been
previously demonstrated that of all the commonly used ref-
erences, this one distorts the eigenvalue spectrum of correla-
tion matrices the least [28].

An interictal epoch (far away from seizure activity) of the
same long-term EEG had already been used as input for the
“artificially coupled EEG” in Secs. II-V. Here we show the
results for a partial complex seizure that is initiated in the
inner part of the tip of the right temporal lobe and impairs
consciousness during its evolution. Seizure duration and evo-
lution (concerning symptoms and signs as well as the cluster
patterns) of the selected example were representative for all
five seizures recorded during the long-term EEG. An analysis
window of 7=1024 corresponding to 5.12 s was shifted over
the recording with 200 sample points (1 s) step width in
order to analyze eigenvalues and eigenvectors of the cross-
correlation matrix (6) in a time resolved way. For the
surrogate-based algorithm we limited the maximal cluster
number to K,,,,=10 in order to save computation time. We
consider this choice to be safe because in the whole data set
of 20 min duration comprising this seizure, the obtained
cluster number was confined by K& <7.

In most parts of the data set the surrogate-based algorithm
estimated a larger cluster number K* than the eigenvector-

based one. Different to the previously studied model of “ar-
tificially coupled EEGs” we can no longer decide strictly
which estimate for the cluster number is correct. To assess
the plausibility of the results, we therefore employed the
CPV algorithm [6,7] to allocate channels to clusters.

In Fig. 9 four snapshots of the cluster patterns are dis-
played for both algorithms. The snapshots are representative
of the corresponding part of seizure evolution, i.e., they do
not depend sensitively on the chosen time step. As defined by
visual inspection of the EEG by an experienced epileptolo-
gist and electroencephalographer (K.S.), the seizure starts at
t=0 and ends at r=217 s. In the examples shown the
surrogate-based algorithm indicates up to four clusters,
whereas the eigenvector-based one finds maximally three
clusters. The best agreement is found in the late ictal period
[Figs. 9(e) and 9(f)], which is immediately followed by a
discrepancy K, =2 vs K5 =1 in the early post-ictal period
[Figs. 9(g) and 9(h)]. However, in both cases the cluster
number reduces from the late ictal to the post-ictal period as
several clusters merge into larger ones also attracting previ-
ously uninvolved channels. From a neurophysiological point
of view, the latter finding would be consistent with the re-
cently proposed hypothesis that one mechanism for seizure
termination is the build up of a spatiotemporally extended
refractory zone that blocks the further spread of ictal activity.
Such a refractory zone could, for example, be established by
a large cluster of neurons firing highly correlated and with
slow periodicity becoming simultaneously unexcitable
[25,29].

Applying the eigenvector-based algorithm to estimate the
cluster number, several seconds before seizure onset [Fig.
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9(b)] only one cluster is found. Allocated contacts are fora-
men ovale electrodes and several contacts of the right tem-
poral anterior strip electrode (TAR), i.e., the electrode that
covers the pole of the right temporal lobe. This finding is
neurophysiologically plausible because they are closest to
the seizure onset zone probed by contact TARI and are
therefore expected to be entrained by ictal activity early dur-
ing the seizure or even before seizure activity may be delin-
eated visually. Different from the eigenvector-based algo-
rithm the surrogate-based one detects four clusters [Fig.
9(a)]. Three of them can be seen as a decomposition of the
cluster found by the eigenvector-based algorithm. Contacts
TARI (red square), TAR4 and TARS (yellow diamonds), and
TARG to TARS (green triangles) belong to different clusters,
though they are located on the same strip electrode. This
reveals that spatial closeness does not necessarily imply in-
volvement in the same cluster. The reason for the difference
might be that the strip electrode TAR is wrapped around the
lateral temporal lobe and the involved contacts record from
cortical areas with different functionality. In addition, the
surrogate-based algorithm finds a cluster involving contacts
of the spatially relatively distant electrode FBR (blue
circles), which records from the basal part of the right frontal
lobe. This cluster is not found with the eigenvector-based
algorithm.

During seizure [Figs. 9(c)-9(f)], typically more contacts
become allocated to the correlation clusters. Using the
eigenvector-based algorithm, in the early phase of the seizure
[Fig. 9(d)], the frontal strip electrodes (FPR and FBR) are
involved in the same cluster as the foramen ovale electrodes
and the contacts TAR1 and TAR2. Again, the surrogate-
based algorithm [Fig. 9(c)] reveals a more detailed result by
separating the contacts on the frontal, the temporal, and the
occipital electrodes into three distinct clusters. As the clus-
ters on the TAR and the OCR electrodes are much smaller
than the frontal one, the fact that these channels are not al-
located to clusters by the eigenvector-based algorithm is in
line with the findings of Sec. V, compare discussion of Fig.
6(b).

Before seizure termination [Figs. 9(e) and 9(f)] both algo-
rithms find the same cluster number K= =K~ =3 and also
the cluster pattern obtained by the CPV algorithm is very
similar. One cluster comprises the foramen ovale electrodes
(red squares) and a second one the contacts of the temporal
anterior electrode (yellow diamonds). Interestingly, the con-
tact TARI, recording directly from the seizure onset zone is
no longer involved in any cluster in this seizure phase. A
third cluster comprises the contacts of the occipital central
electrode (blue circles) and contains the only difference be-
tween both algorithms for the cluster number. It can be at-
tributed to the probabilistic aspect of the maximization pro-
cedure of the CPV algorithm, see [6,7].

In the time period early after seizure termination [Figs.
9(g) and 9(h)], most channels are allocated to correlation
clusters. Again, TAR1 is not part of one of the clusters. The
surrogate-based algorithm [Fig. 9(g)] finds two clusters, the
larger one comprising frontal, most temporal anterior, and
foramen ovale electrodes (red squares). In the smaller one,
contacts of the temporal anterior and the occipital electrodes
are involved (blue circles). Different to most of the panels in
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the upper row, here, the contribution of relatively distant
contacts to joint clusters suggests that functional similarities
rather than spatial closeness is relevant for involvement in
the same cluster.

In contrast to the surrogate-based algorithm the
eigenvector-based one [Fig. 9(h)] obtains only one global
cluster to which the majority of contacts contribute. To in-
vestigate the reason we studied the size of the absolute intra-
and inter-cluster elements of the equal-time cross-correlation
matrix. The intracluster elements of the cluster symbolized
by red squares are 0.45*=0.19 and 0.50*0.22 in the one
corresponding to blue circles (given are mean and standard
deviation). The average matrix elements between these clus-
ters are relatively large, too: 0.28 = (0.22. This suggests that
the surrogate-based algorithm treats this situation as distinct
but interrelated clusters, whereas the eigenvector-based one
interprets the result as a single cluster with substructure. A
similar situation is given for the clusters of the TAR and the
foramen ovale electrodes of Fig. 9(a).

As already mentioned, the observed formation of clusters
and the subsequent evolution of cluster patterns towards a
strongly and globally correlated state after seizure termina-
tion via cluster reorganization is consistent with recent find-
ings of [25,29]. More detailed neurophysiological interpreta-
tions are subject of ongoing research with a larger number of
EEG recordings and go beyond the scope of the present pa-
per.

VII. SUMMARY AND CONCLUSIONS

In the present paper two algorithms for estimating the
cluster number K in multichannel data have been investi-
gated. Different to our previous work [6,7] but similar to the
algorithms presented in [4,5], the algorithms treat the estima-
tion of K on the same footing as the allocation of data chan-
nels to interrelation clusters, which is usually done in a sec-
ond step. Moreover, the methods go without artificially
defining any threshold. Rather, data-driven criteria based on
a chosen significance level a for nonparametric statistical
tests are used exclusively. This makes both methods candi-
dates for unsupervised data clustering.

Using a model system with power spectra realistic for
interictal EEG, in large parts of the scanned parameter space
the surrogate-based algorithm presented in Sec. III and the
eigenvector-based algorithm of Sec. IV perform comparably
well. The occasionally better performance of the surrogate-
based algorithm, which appears more robust for strongly
asymmetric cluster sizes and small bulk sizes (note that the
eigenvector-based algorithm is not applicable if the bulk is
empty), is contrasted by two deficiencies, the first one con-
sisting of the long computation time for generating IAAFT
surrogate ensembles. The eigenvector-based algorithm is
computationally faster by orders of magnitude.

In principle, the generation of surrogate data is a delicate
issue, and, depending on the data, the results might not re-
flect the desired properties, see, e.g., [16]. Therefore we re-
peated the computations of Sec. V using the much faster
method of simple shift surrogates as proposed in [30]. This
method conserves power spectra and amplitude distributions
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exactly, while destroying cross correlations by independently
time shifting the data sets relative to each other and wrap-
ping the extra values around to the beginning of the data set.
For the studied data the obtained results differ only margin-
ally from those included in the present paper. Another
method of speeding up the surrogate generation process con-
sists of using amplitude adjusted Fourier transform surro-
gates (AAFT) [31] that omit the costly iteration procedure.
However, for any particular class of real world data it must
be carefully checked which algorithm for surrogate genera-
tion is appropriate. Note that IAAFT surrogates might not
always be the optimal solution. For instance, if the experi-
mental data show strong quasiperiodic characteristics, like,
e.g., in electrocardiograms or even in EEG of primary gen-
eralized seizures with spike and wave activity, it might be
more adequate to use the approach proposed in [32].

The second deficiency of the surrogate-based algorithm of
Sec. III is its principal restriction to linear interrelation mea-
sures. In contrast, application of the eigenvector-based algo-
rithm to symmetric and normalizable nonlinear interrelation
measures such as, e.g., mean phase coherence [33,34] or mu-
tual information [35-37] is possible.

In application to equal-time cross-correlation matrices
computed from intracranial EEG recordings, the cluster
number estimated by both algorithms may differ. However,
the cluster patterns revealed by both methods show physi-
ologically plausible characteristics consistent with recent hy-
potheses about mechanisms for seizure termination [25,29].
In contrast to the eigenvalue-based algorithm the surrogate-
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based one allows some insight into the clusters’ “fine struc-
ture.”

A problem that our estimation of the cluster number
shares with most other approaches to data clustering is that it
starts from a model assumption. Obviously, every sharply
defined block in the interrelation matrix C produces one re-
pelled large eigenvalue and the eigenvector components are
confined to the corresponding subspace of the
M-dimensional phase space. However, at present our strate-
gies for cluster search invert this reasoning without proving
that this is justified: The surrogate-based algorithm defines
an interrelation cluster for every large eigenvalue A, that is
not compatible with the surrogates. Similarly, the
eigenvector-based algorithm partitions the distance matrix D
in an optimal way and defines a cluster for every eigenvector
in region L. Although we could show that both approaches
perform reasonably well in general, it remains to be investi-
gated which alternative patterns (rings, trees, etc.) are also
detected by the methods of the present paper.
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